استراتژی های معاملات الگوریتمی (Algorithmic Trading)

۲۲ اردیبهشت ۱۳۹۹ | 0 نظر | لینک کوتاه | اخبار و مقالات ارز دیجیتال, مفاهیم پایه

معاملات الگوریتمی چیست؟

معاملات الگوریتمی برای حذف فاکتورهای انسانی ایجاد شده اند و در عوض استراتژی های از پیش تعیین شده و مبتنی بر آمار را دنبال می کنند که با حداقل نظارت می توانند توسط رایانه هایی به صورت شبانه روزی اجرا شوند.

 

رایانه ها می توانند مزایای متعددی را نسبت به معامله گران انسانی ارائه دهند. برای مثال ، آنها می توانند در تمام طول روز و بی وقفه فعال باشند. آنها همچنین می توانند داده ها را به طور دقیق تجزیه و تحلیل کرده و به تغییرات در کسری از ثانیه پاسخ دهند. علاوه بر این ، آنها بر اساس آمار و بدون احساسات تصمیم می گیرند. به همین دلیل ، مدتهاست که بسیاری از سرمایه گذاران این موضوع را درک کرده اند که دستگاه ها با توجه به اینکه از راهکارهای صحیح استفاده می کنند ، می توانند معامله گرهای بسیار خوبی باشند.

 

اینگونه زمینه معاملات الگوریتمی تکامل یافته است. در حالی که این روش با معاملات کامپیوتری در بازارهای سنتی آغاز شد ، افزایش دارایی های دیجیتال و اکسچنج ها آن را به سطح جدیدی رسانده است. تقریباً به نظر می رسد که معاملات خودکار و کریپتوکارنسی ها برای تکمیل یکدیگر ساخته شده اند. درست است که کاربران همچنان باید استراتژی های خود را نیز به کار گیرند ، اما استفاده صحیح از این تکنیک ها می تواند به معامله گران کمک کند تا به راحتی معامله کنند و اجازه دهند ریاضیات بقیه کار را برایشان انجام دهند.

 

استراتژی های اولیه چیست؟

فلسفه های اصلی معاملات الگوریتمی حول محور استفاده از نرم افزار برای کشف فرصت های سودآور و استفاده از آنها با سرعتی که در توانایی انسان نیست می چرخد. متداول ترین روش ها عبارتند از معامله بر اساس مومنتوم (momentum trading) ، بازگشت به میانگین (mean reversion)، آربیتراژ (arbitrage) و انواع استراتژی های یادگیری ماشین  (machine-learning) .

 

اکثر استراتژی های معاملات الگوریتمی بر شناسایی فرصت ها در بازار بر اساس آمار متمرکز هستند. انجام معاملات بر اساس مومنتوم (momentum trading) به دنبال پیروی از روندهای فعلی است. بازگشت به میانگین (mean reversion) به دنبال تفاوت های آماری در بازار است. آربیتراژ (arbitrage) به دنبال تفاوت در قیمت های نقدی در اکسچنج های مختلف است و استراتژی یادگیری ماشین (machine-learning) سعی دارد فلسفه های پیچیده تری را خودکار کند یا چندین مورد را با هم ادغام کند. هیچ یک از این موارد تضمینی ساده برای کسب سود نیستند و معامله گران باید درک کنند چه زمانی و کجا الگوریتم صحیح یا “ربات” را اجرا کنند.

 

معمولاً ربات ها در برابر داده های تاریخی بازار آزمایش شده اند ، که به آن امکان آزمایش سیستم در گذشته یا بک تستینگ (backtesting) گفته می شود. این امر به کاربران امکان می دهد استراتژی خود را بر روی اطلاعات گذشته سهام مختلف ارزیابی کرده و مشاهده کنند در صورت استفاده از این الگوریتم در گذشته چه سودی کسب شده است. برخی از ریسک های انجام این کار می تواند شامل “overfitting” یا بیش برازش باشد ، یعنی زمانی که یک ربات به خوبی تعمیم نیافته است و بر اساس داده های تاریخی اجرا می شود که به طور دقیق شرایط فعلی را منعکس نمی کنند ، بنابراین به یک استراتژی منجر می شود که نتیجه ای نخواهد داشت. برای مثال اگر شما یک ربات را در برابر داده های یک بازار صعودی طراحی و آزمایش کرده باشید ، اما آن را برای راه  اندازی در یک بازار نزولی اجرا کنید. بدیهی است ، بازدهی مورد انتظار خود را نخواهید دید.

 

معامله بر اساس مومنتوم (momentum trading) چیست؟

مومنتوم تریدینگ مبتنی بر این منطق است که اگر یک روند غالب در بازار در حال حاضر قابل مشاهده باشد ، احتمالا آن روند حداقل تا زمانی که سیگنال ها نشان دهند به پایان رسیده است ، ادامه خواهد یافت.

 

ایده معامله بر اساس مومنتوم این است که اگر یک دارایی خاص چندین ماه در یک جهت حرکت کرده باشد ، پس با اطمینان می توان فرض کرد که این روند ادامه می یابد ، حداقل تا زمانی که داده ها برعکس این وضعیت را نشان دهند. بنابراین ، این طرح برای خرید در هر سقوط و قفل کردن سود در هر صعود ، و یا برعکس آن در صورت فروش ، برنامه ریزی شده است. البته ، معامله گران باید بدانند که چه زمانی یک بازار علائم بازگشت روند را نشان می دهد ، در غیر این صورت این استراتژی می تواند خیلی سریع برعکس عمل کند.

 

همچنین لازم به ذکر است که معامله گران نباید استراتژی هایی را تعیین کنند که سعی در خرید و فروش در کف و سقف قیمتی دارند ، که به اصطلاح(catching the knife) نامیده می شود ، بلکه در سطحی که ایمن باشد اقدام به قفل کردن سود و خرید متقابل (buy back) کند. معامله الگوریتمی برای این اقدام ایده آل است ، زیرا کاربران می توانند درصدهایی را که می خواهند به راحتی تعیین کنند و کد بقیه کارها را انجام می دهد. با این حال اگر یک بازار به صورت جانبی (sideways) حرکت کند یا آنقدر بی ثبات باشد که روند مشخصی ایجاد نشده باشد استفاده از این تکنیک به تنهایی می تواند بی اثر باشد.

 

یکی از شاخص های عالی برای بررسی روند ، شاخص میانگین متحرک (moving average) است. درست همانطور که از اسمش پیداست ، میانگین متحرک یک خط در نمودار قیمت است که میانگین قیمت یک دارایی را بیش از X روز (یا ساعت ، هفته ، ماه و غیره) نشان می دهد. غالباً مقادیری مانند ۵۰ ، ۱۰۰ یا ۲۰۰ روزه مورد استفاده قرار می گیرند ، اما استراتژی های مختلف به منظور پیش بینی معامله ، تایم فریم های مختلفی را بررسی می کنند.

 

به طور کلی ، هنگامی که قیمت پایین تر یا بالاتر از میانگین متحرک حرکت کند یک روند پرقدرت در نظر گرفته می شود و وقتی به میانگین متحرک نزدیک می شود یا از خط میانگین متحرک عبور می کند ، روند ضعیف در نظر گرفته می شود. علاوه بر این ، میانگین متحرک هایی که بر اساس دوره های زمانی طولانی تر انجام می شوند ، معمولاً نسبت به نمونه هایی که در بازه های کوتاهتر برای مثال طی ۱۰۰ ساعت انجام می شوند ، اطلاعات بیشتری را ارائه می دهند و برای بررسی روند مناسب ترند.

 

بازگشت به میانگین (mean reversion) چیست؟

بازگشت به میانگین به این واقعیت اشاره دارد که از نظر آماری ، قیمت دارایی باید به سمت میانگین قیمت تاریخی گرایش یابد. انحرافات شدید از این قیمت دلالت بر شرایط اشباع خرید (overbought) یا اشباع فروش (oversold) و احتمال وقوع بازگشت (reversal) دارند.

حتی در مورد یک دارایی مانند بیت کوین (BTC) ، که در واقع فقط در بازار نزولی قرار داشته است ، می توان سقف ها و کف های قیمتی قابل توجهی را مشاهده کرد که از مسیری که قیمت آن به طور تاریخی در آن قرار داشته منحرف می شوند. اغلب اوقات بازارها پس از مدت کوتاهی به سمت این میانگین قیمت می روند. الگوریتم ها با بررسی میانگین های طولانی مدت می توانند با اطمینان بگویند که انحراف شدید قیمت زیاد دوام نمی آورد و سفارشات معامله را آغاز کنند.

 

به عنوان مثال ، یک حالت خاص از این وضعیت، بازگشت انحراف معیار (standard deviation reversion) نامیده می شود و با یک شاخص به نام باندهای بولینگر (Bollinger Bands) اندازه گیری می شود. اصولاً ، این باندها به عنوان حد های صعودی و نزولی در انحراف از یک میانگین متحرک مرکزی عمل می کنند. وقتی حرکت قیمت به سمت یکی از این نقاط پیش می رود ، احتمال بازگشت قیمت به سمت مرکز وجود دارد.

 

البته یکی از بزرگترین ریسک هایی که در این وضعیت وجود دارد این است که الگوریتم نمی تواند تغییرات اساسی را به حساب آورد. اگر یک بازار به دلیل نقصی در دارایی پایه در حال سقوط باشد ، احتمال دارد روند قیمت هرگز بهبود نیابد یا حداقل این بهبودی به سرعت انجام نمی شود. در این حالت معامله گران باید شرایط خاصی که الگوریتم ها قادر به مشاهده و بررسی آن نیستند را نظارت و محاسبه کنند.

 

شکل دیگری از بازگشت به میانگین (mean reversion) ممکن است در چندین دارایی اتفاق بیفتد و استفاده از این روش معامله جفت (pairs trading) نامیده می شود. برای مثال می توانیم بگوییم دو دارایی به طور سنتی با یکدیگر همبستگی دارند. یعنی وقتی یکی از آنها افزایش می یابد ، از نظر آماری ، دیگری نیز صعود می کند. یک الگوریتم می تواند برای مشاهده ی یکی از این دارایی ها ایجاد شود، سپس براساس این احتمال که دارایی دیگر نیز به زودی از این روند پیروی می کند ، معامله را انجام دهد. استفاده از تایم فریم های کوتاهتر برای بررسی این تفاوت ها ماهیت خودکار این استراتژی را بسیار ارزشمندتر می کند.

 

آربیتراژ (arbitrage) چیست؟

آربیتراژ یک استراتژی است که از اختلاف قیمت یک دارایی در چندین بازار بهره می گیرد.

 

بعضی اوقات محصول مشابهی مانند کالا یا ارز می تواند به طور موقت در اکسچنج های مختلف قیمت متفاوتی داشته باشد. این می تواند فرصتی عالی جهت سودآوری برای کسانی باشد که قبل از اینکه تعادل قیمت ایجاد شود عملکردی سریع برای معامله بین این بازارها داشته باشند. برای این منظور ، یک الگوریتم می تواند برای بررسی دارایی های مختلف در بازارهای مختلف و آغاز معاملات به محض یافتن اختلاف قیمتی ایجاد شود.

 

این تکنیک چندان پیچیده نیست ، اما معامله گرانی که می توانند سریع ترین واکنش را داشته باشند ، نسبت به افرادی که کندتر هستند در این روش موفق تر عمل می کنند. این استراتژی برای معاملات فرکانس بالا (High Frequency Trading) قطعاً از مزیت قابل توجهی برخوردار است ، زیرا دقیقا معامله گرانی از این شرایط بازار استفاده می کنند که باعث شکاف و سقوط قیمت ها می شود.

 

استراتژی یادگیری ماشین (machine-learning) چیست؟

یادگیری ماشین و هوش مصنوعی معاملات الگوریتمی را به سطوح جدیدی سوق می دهند. نه تنها استراتژی های پیشرفته تر در این استراتژی قابل استفاده و انطباق هستند بلکه تکنیک های جدیدی مانند پردازش زبان طبیعی (Natural Language Processing) مقالات خبری نیز می تواند راه های بیشتری را برای دریافت اطلاعات ویژه ای در مورد حرکات بازار فراهم کند.

 

الگوریتم ها می توانند مطابق با استراتژی ها و داده های از پیش تعیین شده تصمیمات پیچیده ای بگیرند ، اما با یادگیری ماشین ، این استراتژی ها می توانند خود را بر اساس آنچه در واقع موفق عمل می کند ، بروزرسانی کنند. به جای منطق فازی اگر / آنگاه “if/then” ، یک الگوریتم یادگیری ماشین (ML) می تواند چندین استراتژی را ارزیابی کرده و معاملات بعدی را براساس بالاترین بازده ممکن اصلاح کند، در حالی که آنها همچنان کار خود را برای راه اندازی انجام می دهند ، این بدان معنی است که معامله گران حتی هنگامی که شرایط بازار فراتر از پارامترهای اولیه است ، می توانند به ربات خود اطمینان داشته باشند.

 

یکی از انواع محبوب استراتژی یادگیری ماشین ، (naive Bayes) نامیده می شود. در این تکنیک ، الگوریتم های یادگیری معاملات را بر اساس آمار قبلی و احتمال انجام می دهند. به عنوان مثال ، داده های تاریخی بازار نشان می دهد که بیت کوین (Bitcoin) پس از سه روز سقوط متوالی ، ۷۰ درصد رشد می کند. یک الگوریتم (naive Bayes) مشاهده می کند که طی سه روز اخیر کاهش قیمت رخ داده است و به طور خودکار سفارش امروز خود را بر اساس احتمال افزایش قیمت اجرا می کند. این سیستم ها بسیار قابل تنظیم هستند و همه معامله گران این اختیار را دارند که پارامترهای خود را برای مواردی مانند نرخ ریسک و پاداش تعیین کنند و هنگامی که از میزان تعادل راضی بودند ، می توانند اجازه دهند با حداقل تداخل کار کند.

 

یکی دیگر از مزایای استراتژی (ML)،  توانایی ماشین آلات برای خواندن و تفسیر گزارش های خبری است. با اسکن کلمات کلیدی و در اختیار داشتن استراتژی های مناسب ، این نوع رباتها هنگام انتشار خبرهای مثبت یا منفی در عرض چند ثانیه می توانند معامله کنند. بدیهی است که فقط به نسبت منطق موجود در سیستمشان دقیق عمل می کنند و در نتیجه اجرای آنها دشوار است اما با این حال در زمینه تنظیم صحیح ، نسبت به سایر معامله گران برتری دارند.

 

توجه داشته باشید که این یک روش پیشرو در معاملات خودکار است. بنابراین ، یافتن ربات هایی که در این زمینه کار می کنند ممکن است دشوارتر باشد یا هزینه دسترسی بیشتری داشته باشند ، و یا نسبت به بعضی از تکنیک هایی که بیشتر آزمایش شده اند کمتر قابل پیش بینی باشد.

 

تعقیب سفارش (order chasing) چیست؟

تعقیب سفارش عبارت است از بررسی سفارشات خاص و بسیار بزرگ و سپس تلاش برای حرکت سریع بر اساس این فرض که این امر در نهایت منجر به حرکت بیشتر قیمت ها خواهد شد.

 

معمولاً ، توانایی پیش بینی یک سفارش بزرگ از سوی معامله گر ، به نوعی به اطلاعات داخلی نیاز دارد ، و انجام معاملات با چنین اطلاعاتی به طور کلی غیرقانونی است. با این حال ، برخی از معامله گران فرکانس بالا (high-frequency traders) روش های قانونی را برای گرداوری داده ها از فروم های معاملاتی خارج از بورس (over-the-counter) به نام “Dark Pools” پیدا کرده اند. این نوع از فروم های معاملاتی لازم نیست داده های سفارش خود را مانند اکسچنج ها ارائه دهند که در نهایت حرکتشان در بازار به تأخیر بیفتد. با جمع آوری و پیاده سازی این داده ها سریع تر از یک معامله گر ، کاربران این تکنیک می توانند مزیت بزرگی نسبت به افراد دیگر داشته باشند.

 

به عنوان مثال ، می بینید که یک سفارش فروش عظیم در یک دارک پوول (Dark Pool) اجرا می شود. این موضوع به شما می گوید که به زودی با ارسال این اطلاعات به بازار ، بسیاری از فروشندگان کوچک تر احتمالاً با انجام سفارشات خود به آن واکنش نشان می دهند. از آنجا که می توان این موضوع را پیش بینی کرد ، می توانید از این موج فراتر روید و جزو اولین کسانی باشید که برای فروش اقدام می کنند ، به این معنی که هنگام کاهش هیجانات می توانید به راحتی برای خرید متقابل (buy back) اقدام کنید. تا زمانی که داده ها از طریق کانال های مناسب جمع آوری شده باشند، این روش غیرقانونی نیست و بسیاری از معامله گران الگوریتمی این روش را برای استراتژی انتخاب خود کرده اند.

 

از کجا می توانم برای انجام معاملات الگوریتمی کریپتوکارنسی اقدام کنم؟

وب سایت های بسیاری وجود دارند که انواع مختلفی از الگوریتم های معاملاتی را ارائه می دهند ، که می توانید از طریق آن به اکسچنج دارایی دیجیتال مورد نظر خود متصل شوید.

 

سرویس های بسیار اندکی وجود دارند که می توانند به سرعت امکان انجام معاملات الگوریتمی را برای شما فراهم کنند. سایت هایی مانند (TradeSanta) ، (Bitsgap) و (Cryptohopper) همه انواع مختلفی از حساب ها را ارائه می دهند که بسته به اینکه چه ابزارهایی در دسترس هستند ، می توانند از انواع مختلف تا قیمت های مختلف را در بر بگیرند. برای مبتدیان ، یک حساب کاربری رایگان برای شروع گزینه های زیادی را ارائه می دهد ، اما اگر می خواهید حرفه ای تر عمل کنید ، حساب های پرداختی می توانند بسیار مفید باشند.

 

این سایت ها به طور کلی آموزش و مطالب دیگری را نیز ارائه می دهند تا بتوانید برای یافتن ربات ها و راهکارهای مناسب اطلاعات لازم را کسب کنید. با وجود این که سرویس ها با تمامی اکسچنج ها سازگار نیستند ، اما متوجه خواهید شد که اکثر آنها تقریباً از بزرگترین و محبوب ترین اکسچنج های موجود پشتیبانی می کنند. برخی حتی برای استفاده از ربات های خود در ارتباط با یک پلتفرم خاص پروموشن های ویژه ای دارند ، بنابراین کاربران گزینه های زیادی برای انتخاب خواهند داشت.

 

مسلما تکنیک ها و سرویس های بیشتری نیز برای استفاده وجود دارد ، اما این راهنما اصول لازم را برای شما فراهم کرده است تا با معاملات الگوریتمی آشنا شوید. آهسته پیش بروید و تا جای ممکن اطلاعات کافی را کسب کنید تا در نهایت یک استراتژی خودکار که برای شما مناسب است را پیدا کنید.

 

ترجمه شده توسط دلاریپتو

No views yet

دیدگاه بگذارید

avatar


    | 6,878,929,600 تومان

    | 6,997,192,000 تومان

    | 234,232,746 تومان

    | 238,259,670 تومان

    | 95,940 تومان

    | 97,590 تومان

    | 6,297,356 تومان

    | 6,405,620 تومان

    | 27,462.81 تومان

    | 27,934.95 تومان

    | 8,285,260 تومان

    | 8,427,700 تومان

    | 69,900 تومان

    | 70,900 تومان

    | 0 تومان

    | 0 تومان

    | 0 تومان

    | 0 تومان

    | 0.000

    | 0.000

    | 0.000

    | 0.000

    | 0.00 $

    | 0.00 $

    | 0.00 $

    | 0.00 $

    | 0.00 $

    | 0.00 لیر

    | 0.00 لیر

    | 0.00 لیر

    | 0.00 لیر

    | 0.00 لیر

    | 0.00 لیر